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Executive Summary: 

Research is conducted to find a robust wavelet 

based algorithm for automatic identification of 

push-to-talk radio transmitters. Digital data at an 

intermediate frequency (IF) is pre-processed to 

translate it into a form applicable to wavelet 

analysis. The magnitudes and the relative positions of 

the extrema from the best suited wavelet scales are 

used in conjunction with a distance measure algorithm 

to determine from which transmitter any particular 

signal may have originated. The distance measure 

algorithm can correctly identify the four signal sets 

provided for the research. Even at reduced signal to 

noise (SNR) ratios good identification is obtained. 

Automatic selection of a good (i.e. optimal) threshold, 

the simultaneous use of several scale outputs and a 

more robust choice of the reference templates should be 

addressed in follow on work. The current version of the 

algorithm can classify all sets, with at least an 80 

percent reliability at an SNR on the average 10 dB 

worse than the original recordings. The procedure lends 

itself to be automated, minimizing human interaction. 
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I.  Introduction 

Signals generated by different transmitters are believed to 

possess somewhat different characteristics. The transient 

response of a transmitter is defined to be the carrier strength 

change from the off-state to the on-state, and of course from the 

on-state to the off-state. The turn on response is unique to a 

specific transmitter and may even differ among units of the same 

make and model. These observations are not applicable to the 

turn-off response. Therefore, the uniqueness of the turn-on 

transients is exploited to identify the source of the signals and 

therefore the transmitter. 

Time-frequency analysis of stationary signals is a well 

studied and known subject. The Fourier Transform (FT) method is 

well suited for this type of analysis. However, when the signal 

of interest is non-stationary, the FT method is not appropriate, 

since it uses a complex exponential basis function that exists 

over infinite time. A sliding time-window (Gaussian) was 

introduced by Gabor (1946) to gain time information from the FT 

method. This modified Fourier Transform method is called the 

Short Time Fourier Transform (STFT) . Once a window is chosen, the 

time-frequency resolution is fixed. This method requires that the 

signal is stationary within these intervals. 

A technique more suitable for transient signal analysis is 

the Wavelet Transform (WT) method. It is more revealing than the 

STFT method in terms of time and frequency information. Basis 

functions of the WT, unlike the complex exponential of the FT, or 

STFT are shorter in time duration then the analysis interval. 

This compact support makes the WT localized, in frequency and in 

time. Moreover, wavelets provide the flexibility to choose the 

particular wavelet function that is appropriate for a specific 

application. This is possible since there are a large number of 



compactly supported wavelets that can be used as orthogonal basis 

functions. 

The purpose of this report is to investigate the use of the 

WT method to classify transmitter signatures. 

II.  Signal Preprocessing and Filtering. 

1.  Signal Preprocessing: 

Representative data from each source, that is one signal 

from each transmitter is shown in Figure 1 and 2. Figure 1 

displays typical turn on transients, while Figure 2 shows the 

respective turn off transients. The data is recorded after it is 

intercepted by the antenna and processed by a typical radio 

receiver. The carrier frequency of the radio is 138.525 MHz. The 

signals are filtered with a 1 Mhz bandwidth (BW), digitized at a 

sampling frequency of 5 Mhz at a center frequency of 1.075 Mhz. 

The signals are in binary form with 10 bits available for a 

discrete value representation. These signals (i.e. digital 

recordings) are pre-processed (i.e. modified) to change the data 

into a form suitable for WT processing. 

There are four steps in the pre-processing phase, 

sequentially given by: 

1) taking the envelope, 

2) filtering, 

3) differentiating, and 

4) a final filtering. 

Prior to taking the envelopes, the DC terms are removed. 

100-point boxcar averagers are used for filtering the envelope, 

whereas 50-point boxcar averagers are used after the 

differentiation. The sizes of the filters were experimentally 

determined. 



The processing of the turn off transient did not lead to 

identification, hence our work deals only with the turn on 

transient portions of the data. Widening the processing band 

width by using higher sampling rates may allow classification of 

the transmitters based on turn off characteristics. Of course, a 

larger bandwidth allows more noise to pass, making this approach 

less reliable at a given SNR level. The bandwidth (about 2.5 MHz) 

of the data set may not permit the observation of very short 

duration transients if they indeed do exist. 
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Figure 1. Turn On Transients From Four Transmitters, 

Transmitters: (a) = 1,(b) =2, (c) =3, (d) = 4 
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Figure 2.  Turn Off Transients From Four Transmitters. 

Transmitters: (a) = 1,(b) = 2, (c) = 3, (d) = 4 . 

A closer look at the turn on transients reveals a signal 

with a typical ramp type behavior (i.e. unit step response 

of a second or higher order linear system) . They may differ in 

slope, have unique dips or a slow oscillation of the envelope 

(i.e. 1 to 2 cycles over the ramp duration). However none of 

these transients, even with the DC component removed, is in a 

form to which the WT is directly applicable. Wavelet Transforms 



are not useful in analyzing low frequency signals, but they are 

well-suited for short duration phenomena. Thus, it was necessary 

to transform the data into a form suitable for wavelet analysis. 

Details are presented in the next chapter. It should be noted 

that a denoising process tends to enhance the identification 
performance. 

To transform the envelopes of the signals into a form which 

allows successful WT analysis, the envelope is differentiated 

changing the ramps (i.e. step responses) into pulse like signals. 

Figure 3 shows the typical results after the pre-processing 

operation when applied to the signals shown in Figure 1. The 

differentiation is a high pass operation that provides a gain 

that is linearly proportional to frequency. That means, the high 

frequency components become emphasized. Unfortunately, this also 

applies to the additive noise components so that careful 

filtering must be employed during the stages of the pre- 

processing. From empirical studies and some theoretical 

considerations a filtering operation is selected and applied to 
the data before and after the differentiation. 

The data used in the analysis was collected and recorded by 

the Naval Security Group Activity, Charleston, SC. Nine 

turn-on/off samples of each of four transmitters were recorded. 

All the radios are Motorola models. Each radio is identified by 

its model name and number and is listed below: 

Radio: Model: 
Transmitter 1 (Trl) Maxtrac 
Transmitter 2 (Tr2) Saber 
Transmitter 3 (Tr3) HT440 
Transmitter 4 (Tr4) Saber. 

Tr2 and Tr4 are different radios of the same model. 
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Figure 3.  Pre-processed Turn On Signals ( 4 Transmitters) 

Transmitters: (a) = 1,(b) = 2, (c) = 3, (d) = 4 . 

2.   FILTERS 

In the implementation of the pre-processing two filtering 

operations are performed. The first one follows the envelope 



operation and removes some of the broadband noise. This filter 

(boxcar averager of length 100) is followed by a differentiation 

operation (i.e. first order difference). The differentiation 

emphasizes the high frequency noise at the same rate as the first 

filter tends to attenuate it. Hence a second filter (low pass) 

operation is implemented. The second filter uses again a box car 

averager, in this case of length 50. Boxcar averagers are also 

called integrate - and - dump filters. Sometimes they are 

referred to as moving average filters. They slide along the time 

series (the data) and form an average over the length of data 

span contained within the filter memory. The frequency response 

of the boxcar averager is a digital sine function, which is very 

similar to the familiar analog sine function. One could 

incorporate all three operations (lowpass - differentiation - 

lowpass) into one sophisticated filter, but for ease of 

computation and efficiency this is not done. Processing that uses 

median filtering in place of the last lowpass filter in the pre- 

processing phase is an alternative scheme that can be pursued at 

some time. This would minimize the spreading due to the 

convolutional filtering (median filtering tends to preserve the 

rise and fall times of a pulse). 

III.       WAVELET TRANSFORM (WT) 

1.  Introduction 

Wavelets are proportional bandpass processing schemes which 

are also known as constant Q-filtering  (Akansu and Haddad, 1992; 

Burrus and Gopinath, 1993). Typical basis functions are the 

Walsh, Daubechies, spline, and sine basis function. The Walsh 

function is a set of rectangular basis function, the Daubechies 

functions are solutions to the scaling function, the spline 
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function uses a triangular scaling coefficients, comparable to a 

Bartlett weighting in a FIR low pass filter. The sine function is 

equivalent to a brick (ideal) low pass filter. The bandpass 

filter structure uses these basis functions as impulse response 

in proto-type FIR filters to achieve the proportional band pass 
filtering. 

The Wavelet Transform (WT) is founded on a set of specific 

basis functions, which are called wavelets (Young, 1993) . They 

include short duration/high frequency and long duration/low 

frequency functions. Each element in the wavelet set is 

constructed from the same function, which is called the 

'analyzing wavelet' or the 'mother wavelet' . 

There are three conditions for a function to be a mother 

wavelet. It must be oscillatory, it must decay to zero, and it 

must integrate to zero (Young, 1993). 

The processing scheme is adopted from Newland, which 

requires that the scaling coefficients have to be given to the 

wavelet transform routine (Pitta, 1995). Since the signals of 

interest are expected to have a some discontinuity in phase 

and/or in amplitude, basis functions are selected with matched 

filtering as motivation. 

Several WT were tried with the Daubechies polynomial of 

order 8 best suited for the data at hand (Payal, 1995) . This is 

understandable in a matched filter sense, if we compare a typical 

output waveform from the pre-processing procedure with the family 

of Daubechies polynomials. The processing is accomplished by 

forming the inner product of the scaling coefficients (i.e. low 

pass filter) and the wavelet coefficients (i.e. high pass filter) 

with the data as indicated by equation 3.1: 

8 



<4n =< x(t)/i|rffl0(t)> 

i|^(t)   = aöm/2 *  (aömt - nb0) 

X{t)    =En£fl    3.*«   (« 
(3.1) 

i|r C t)   =2 2fld(n) 4>(2t-n) 

4>(t)    =2  £flC(n)    (|)(2t-22) 

d(n)   =   {-l)n    c{N-n) ; 

where c(n) & d(n) are the weights selected for the lowpass & 

highpass filter, respectively. N is the length of the filters and 

(Xn  is the wavelet transform coefficient at scale m and time 

(delay) n. The d(n) coefficients are the wavelet coefficients 

which related to the scaling coefficients in a simple manner 

(i.e. position reversed and alternating in sign) . Y (t) and $(t) 

are the wavelet function and scaling function, respectively. 

2.  Filter Banks and Discrete Wavelet Transform 

Multiresolution analysis can be implemented by using a 

technique called Multiresolution Pyramid Decomposition or 

Mallat's algorithm (Vetterli and Kovacevic, 1995). Mallat's 

Pyramid Algorithm is used to obtain the Discrete Wavelet 

Transform (DWT). The Discrete Wavelet Transform coefficients at 

scale j are obtained by convolving the coefficients at scale j+1 

with ho (n) and hx (n) . The impulse responses ho (n) and hx (n) are 

the time reversed coefficients of c (n) and d(n), respectively. 

This followed by a decimation procedure to produce the expansion 

coefficients at scale j. Figure 4 shows the implementation of the 



Mallat Pyramid Algorithm for three levels (i.e. scales) . The 

notation LP represents a lowpass FIR filter, while HP represents 
a highpass FIR filter. 

aj+i — 

LP -+~@  

■j-2 

a._2 

Figure 4.  Three Levels of Multiresolution Analysis 

Due to its pipe line structure the algorithm is very fast. 

It can be faster than an FFT, since the processing cost is 

linearly proportional to the data length. All filters in a given 

class (i.e. LP or HP) are identical, making the implementation 

fairly simple. 

IV.  IDENTIFICATION PHASE 

1, Reduced Set Representation 

One of the main drawbacks of the discrete (time) wavelet 

transform is the shift variance, since the wavelet coefficients 

of a signal and a shifted replica of itself can be very 

different. A Euclidean distance measure (introduced by Aware, 

10 



Inc., 1992) is used as part of the technique to classify the 

signals at scales where the effects of shift variance can be 

tolerated. 

Mallat and Zhong (1989) demonstrated that the maxima 

extracted from the modulus of the wavelet coefficients can be 

used to reconstruct the input signal. That is, the maxima of the 

modulus of the wavelet coefficients contain approximately the 

same amount of information as the original signal. Consequently, 

signal analysis can be performed based on the wavelet extrema, 

which form a reduced signal representation. 

Thus, wavelet coefficients at each scale are replaced by 

their extrema. The reduced set is only non zero where the scale 

has an extrema, and is equal to the original value at these 

locations. Wavelet scale coefficients, which are not extrema, are 

set to zero. 

2.  Ranking/Pairing Algorithm 

The first step, in computing a distance measure based on 

pairing, is to rank the peaks of the sets to be compared. That 

is, the peaks at each scale are ranked by their amplitudes (i.e. 

same procedure as is used in median filtering) . Therefore the 

ranked sequences are ordered (ranked) starting with the smallest 

value and ending with the largest value. 

The second step is to pair the ranked peaks of the two 

sequences to be compared. The peak with the highest rank (largest 

amplitude) in one set is paired to the peak with the highest rank 

(largest amplitude) in the other set. The next in rank (order, 

sequence) is paired to that next in rank of the other set. The 

pairing scheme does not require the number of elements in both 

11 



sets to be the same. When a peak in one set does not have a 

corresponding peak in the other, a zero is inserted into the set 

that has a smaller number of peaks, and the pairs are formed by- 

matching the remaining peaks and the zeros. 

3.  Distance Measure 

The third step is to compute a distance measure for the 

matched pairs. Several distance measures were initially tried. 

The best results were obtained by using the ranking and pairing 

technique. It is noted that the ranking approach will be 

sensitive to the additive noise component. The distance assigned 

to the pair is the sum over the Euclidean distances in each 

scale. Thus, we compute 

d(aJ fjbi)   =        £ {kim)      [W3kim {aik - b*m)*V* (3.2) 

where (k,m) denotes the locations of matched peaks, aj and fcP are 

the wavelet extrema at scale j, and aj
k and tPm are the values a

j, 

fcp at temporal locations k and m, respectively. VPKm  is the 
weighting factor at scale j for the relative distances between 

the corresponding coordinates of matched peaks. The weighting 

factor, WKm  , is defined as 

TAP v vv    k,m 

|nj
k - n\|       ;    if k * m 

(3.3) 

1 ;     if k = ni 

where nj
k and n

j
m are the coordinates of a

j
k and tPm, respectively. 
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The similarity between two sets is described in terms of the 

sum of the Euclidean distances of amplitudes weighted by the 

square root of the relative distances between the corresponding 

coordinates. Basically, a small value \n\  - njJ and | aj
k - b>m| , 

implies a high degree of similarity between aj and kP. 

The penalty weight, TAP kfIn , is determined by the separation 

of the peaks and has a lower bound of unity. Large separation 

between the matched peaks corresponds to large penalty factors. 

The distance measure also depends on the amplitude difference of 

the matched peaks. The distance measure is directly proportional 

to the difference in amplitude. It should be noted that even 

identical scale outputs with an offset in time (due to signal 

delay) would have a non zero weighting factor. This problem is 

eliminated by removing the offset time prior to forming the 

distance measure. One can do this by correlating the signals to 

be identified, with the template and subtracting off the amount 

of misalignment (i.e. compensate for the amount of lag indicated 

by the cross correlation) . A second way, which was used in the 

work presented here, is to line up the dominant peaks of the 

signal of interest and the template in the scale under 

consideration. This naturally lines up the coefficients (i.e. 

extrema) in a way that compensates for relative time off set 

between the two sequences under observation. 

4.  Implementation 

There is a total of four different signal sets. Each set is 

generated by a different transmitter. The method outlined so far 

was employed to determine the transmitting source of the signal. 

For this purpose, a template for each transmitter set is needed 

to measure the degree of similarity with any signal of interest. 

13 



The distance measure algorithm is applied to a template and a 

signal of interest at the appropriate wavelet scale after 

compensation of the time offset. 

The first signal from each of the four sets was chosen as a 

template. A small distance measure implies that the signal under 

consideration comes from the set that the template represents. 

The fourth, eighth, and sixteenth order Daubechies wavelet 

functions were used to compute the WT of the pre-processed 

signals. The eighth order Daubechies (Dau-8) wavelet functions 

gave satisfactory results, whereas Dau-4 and Dau-16 did not. The 

Dau-8 wavelet function, which was used as the mother wavelet, is 

shown in Figure 5. 

Figure 5. Eighth Order Daubechies Wavelet Function 

For illustration purposes, the distance values at Scale 11 

between the first four signals from Transmitter 1 and the 

templates are tabulated in Table 4.1. As expected, the distance 

value with Template 1 is significantly less than that with the 

other templates, since Template 1 is the template for the signals 

14 



from Transmitter 1, and small distance values imply high 

similarity. 

Tempi.1 Tempi.2 Tempi.3 Tempi.4 

signal 1 0.00 44.30 14.77 107.84 
signal 2 3.05 47.23 16.34 103.85 
signal 3 2.61 40.58 13.79 99.78 
signal 4 1.08 42.90 15.48 105.30 

Table 4.1 Distance Measures 'd' at Scale 11 for Signals 1-4 of 
Transmitter 1 

As can be seen, the distance values 'd' between signals from 

Transmitter 1 and Template 1 are well separated from those of the 

other templates. Zero value in distance indicates a perfect match 

which occurs between Signal 1 and Template 1. This is expected 

since Signal 1 was chosen as a template for the set. Similar 

results are obtained when comparing the different signal sets 

with the four templates [Payal,1995]. 

A thresholding technique can be introduced to automate the 

identification procedure by defining a threshold level for each 

template. For example, one can compare the maximum value of Set 1 

with the minimum values of other templates. Determining the 

threshold levels is not addressed in this study; however, 

comparing the minimum and maximum values of the distance measure 

is quite useful in evaluating the performance of the 

identification scheme. The maximum and minimum values quoted in 

the remainder of this chapter are obtained by using all template 

15 



and all data sets. At Scale 11 with Template 1, the maximum 

distance value is 5.3971, whereas the nearest minimum distance 

value of the other three templates is 12.52. This minimum occurs 

with Template 3, which indicates that Transmitter 1 and 

Transmitter 3 have a somewhat similar transient response (i.e., 

turn-on behavior) . The ratio of the minimum Template 3 output to 

the maximum Template 1 output is 2.319, which shows how well the 

Template 1 results are separated from the other template results. 

This separation ratio is 2.381 and 1.66 for Scale 10 and Scale 9, 

respectively. Lower scales (lower than 9) were not useful in 

terms of the similarity measurement, and are not included. 

Similarly, the application of the distance measure to the 

other three signal sets resulted in the following separation 

ratios. Again these separation values are the ratio of the 

smallest wrong set distance and the largest correct set distance. 

They show how well the signals of a particular set are separated 

from the other sets under worst case conditions. The separation 

ratios are 3.56, 2.76, and 1.88 for signals from Transmitter 2 at 

Scales 11, 10, and 9, respectively. The following separation 

ratios were obtained at Scales 11, 10, and 9: 4.64, 1.98, and 

3.73 for signals from Transmitter 3; and 1.75, 1.4, 1.24 for 

signals from Transmitter 4. Signal versus template (distance 

measure) output plots for all signal sets are given in Appendix 

A. One can obtain minima, maxima , and the spread of the distance 

measures very easily from the plots. It should be noted that, for 

Transmitters 1, 2, and 3, nine signals were used while, for 

Transmitter 4, only six signals were usable. 

5.  Probability of Identification 

Signal-to-Noise Ratios (SNR's) for all signals were 

estimated. It is clear from Figure 1 that the signal waveform can 

16 



be partitioned into three regions. The off region is where there 

is no signal; the transition region is where there is a build-up 

from off to on state; and the on region is where the signal is at 

steady state. We can assume that the off region consists of noise 

only, allowing the computation of the noise power. Noise and 

signal coexist in the on region. The signal power can be computed 

by finding the power in the on region and subtracting the noise 

power. Hence, we can compute the SNR's for all sets. An average 

SNR value of 32.38 dB, 40.87 dB, 38.58 dB, and 31 dB was computed 

for Set 1, Set 2, Set 3, and Set 4, respectively. 

Gaussian white noise is added to all signal sets to decrease 

the SNR levels. To obtain some statistical significance the 

experiments are repeated eleven times for each SNR value, and the 

probability of identification (Px) versus SNR is computed. The 

Px/ the probability of identification is defined as the ratio of 

the number of correct identification and the total number of 
experiments. 

The results are shown in Figure 6. If the signal of interest 

is from Transmitter 1 and its SNR is better than 16 dB, then its 

identification probability is high. The minimum SNR values 

required for a reliable classification at Scale 11 are 30, 23, 

and 30 dB for signals from Transmitter 2, 3, and 4, respectively. 

Several line up (pairing) procedures were tried on an 

experimental basis, to see if the identification procedure can be 

made more robust. So far only the distance measure that uses all 

extrema and pairs the ranked peaks seems to be effective in 

classifying the four signal sets. 

17 



1 

0.8 

0.6 

0.4 

0.2- 

0 
10 

1»         "■■' 

r 
/1 

!      + 
i 

i 
■ o —scale 11 

+ -scale 10 

■••scale 9 

1 

0.8 

0.6 

0.4 

0.2 
10 

20 30 
SNR in dB 

40 

(Trl) 

-*—*—*- 

^    PV 

,,,>< 

..*•■ 

* f> 

—scale 11 

-scale 10 

••-scale 9 

20 30 
SNR in dB 

40 

(TV3) 

1 
•^          **' 

0.8 1    ?' •' 

Dfi 
1?   f 

0.4 —scale 11 

J 1 —scale 10 
0.2 

iL.us.-* 

-scale 9 

n 
20 30 40 

SNR in dB 

(TM) 

1 

0.8 

0.6 

0.4 

0.2 
10 20 30 

SNR in dB 

(Tr4) 

50 

if 
7     / 
/    / —seal© 11 

-scale 10 

"-scald 9 

. 
40 

Figure 6. Probability of identification (Pj) of the signals 
(a) Px of signals from Transmitter 1 (b) Pj of signals from 
Transmitter 2 (c) Px of signals from Transmitter 3 (d) Pz of 
signals from Transmitter 4. 

V.   CONCLUSION 

1.   CLASSIFICATION OF PUSH-TO-TALK COMMUNICATION 

The main objective of this study is to determine a robust 

wavelet based algorithm designed to extract features to identify 
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push-to-talk transmitters. Robustness, compact signal 

representation capability, and low computational complexity are 

the main advantages of the wavelet analysis, which is used in the 

feature extraction (identification). 

Push-to-talk communication recordings provided for this 

research have a common feature: They all include a transition 

from the off-to-on state, as well as the on-to-off state. The 

turn-on transition phase is unique for each transmitter, and can 

effectively be used for classification purposes. The recordings 

differ from each other by the waveform in the length of the 

transition region. The feature for the classification of the 

signals is contained in the signal envelopes. The turn-on part of 

the envelope is a transient and, hence, a wideband signal. 

The original push-to-talk transmitter recordings are not in 

appropriate form for WT analysis. Thus, the recordings are pre- 

processed to be usable for WT processing. Differentiation of the 

envelope of the signals is used to transform the data into 

pulse-shaped transients. Filtering is applied to both the 

envelope and the differential to improve the signal-to-noise 
ratio. 

A distance algorithm is introduced in this work. It is based 

on an Euclidean distance measure between the wavelet coefficients 

of two data set in terms of magnitude and relative position on a 

given scale. Decisions about the origin of the signal are made 

according to the distance measures between the signals and the 

templates, where each template represents a different 

transmitter. A small distance value implies that the signal 

belongs to the same set as that particular template. In its 

current form, the classification assumes that any signal of 

interest belongs to one of the four sets. 

The distance algorithm was applied to four different signal 

19 



sets. The first recording in any of the sets is designated to be 

the template. Instead of using all the wavelet coefficients, just 

the local extrema are used. Using only the local extrema reduces 

the computational complexity of the algorithm. 

The distance measure between the signal and the templates is 

the sum of all Euclidean distances between paired peaks of the 

signal and the templates. It also includes a penalty factor due 

to the relative square root distance between the matched ranked 

pairs and their difference in amplitude. Matching signal peaks to 

the template is performed by ranking. Before pairing the peaks, 

the maximum peak of the signal is aligned with the maximum of the 

templates.This tends to reduce the penalty weight for like 

signals which are not aligned in time. 

The distance algorithm described in chapter 4, the one that 

uses all the extrema and the pairing of ranked peaks allows 

robust identification of the signal sets. A printout for all 

programs is provided in Appendix B. 

2.   RECOMMENDATION FOR FUTURE STUDY 

The distance algorithm introduced in Chapter 4 gave 

promising results in classifying the four signal sets provided 

for this study. Three important issues have not been addressed in 

this research: i) the template selection, ii) a threshold 

technique, and iii) incorporation of information from other 

scales. In this work, templates are chosen arbitrarily from the 

signal sets. When the signals to be identified are from the four 

sets, the algorithm is capable of classifying the signals. 

However, if the signals do not belong to these sets, the 

algorithm will compute a distance to each of the templates, which 

could lead to misinterpretation hence misclassification. 
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A thresholding technique and robust template selection 

should be the subject of further study. 

Also, no attempt was made to combine information from 

several scales. Identification was obtained by using just one 

scale (i.e. highest frequency location). Typically, Scale 11 

worked best. If the distance information from Scales 9 and 10 

could be used, a potentially more robust identification 

performance should be realized. 
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Appendix A 

Appendix A consist of 2 sets of 4 figures (Figure A.l - 

A. 8) . The first four figures use data at their original SNR value 

while the last four figures use data at an SNR level 10 dB below 

the original values. The absolute SNR levels of the originals are 

32.38, 40.87, 38.58, and 31 dB for transmitters 1,2,3 and 4, 

respectively. Figure A.l and A.5 use signals from transmitter 1. 

Figure A.2 and A. 6 use signals from transmitter 2. Figure A.3 and 

A. 7 use signals from transmitter 3. Figure A.4 and A. 8 use 

signals from transmitter 4. 

These figures allow easy determination of the maximum and 

minimum values as well as the mean and variability behavior of 

each test SNR level. One can fairly easily establish the 

sensitivity of each set relative to its template and to members 

of the other sets. The second set (Fig.A.5-A.8) provide a sense 

of the degradation of the identification procedure as the SNR is 

lowered by 10 dB. More information in terms of identification 

ability and SNR levels are provided in the main body (see Fig. 

6). 
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Appendix B 

This appendix provides a listing of the Matlab code used to 

obtain the identification probabilities. 
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WTSIGNAL.M 

% WTSIGNAL.M 

% This program removes the DC, takes the envelope, and filters 
% the record of a transmitter. Then it takes the 
% differential and filters again to obtain a signal applicable to 
% wavelet processing. 

x=input(' enter the signal name ");%all programs assume a data 
%   vector of length N, which is a power of 2 
x=x-mean(x);  % removes DC component 
y=envelope(x); % takes envelope 
my=asmooth(y,100);% boxcar averaging size 100 
dmy=diff(my);% differential of the envelope 
mdmy=asmooth(dmy,50);%boxcar averaging size 50 
% add on one data point (zero) for the lost one in differentiatio 
n 
i=length(mdmy); 
mdmy(i+1)= 0; 
clear x y my dmy i 
end 
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ASMOOTH.M 

% ASMOOTH.M 

function [y] = asmooth(x,L) 
% boxcar averager of length L, creates as many data points 
% (length of y) as the length of the input vector x. 

Y = [] ; 
if nargin ~= 2, 

error('avsmooth: invalid number of input  arguments...'); 
end 
if min(size(x)) ~= 1, 
error('avsmooth: input argument must be a lxN orNxl vector'); 
end 
x=x(:); 
ns = length(x); 
y=zeros(ns, 1) ; 

% average 

%For the first L/2 points 
for k=l:L/2 

y(k,l)=mean(x(l:L/2+k,l)); 
end 

%for in the data 
for k=L/2+l:ns-L/2 

y(k,l)=mean(x(k-L/2:k+L/2-l,l)); 
end 

%for going out  of the data 
for k=ns-L/2+l:ns 

y(k,1)=mean(x(k-L/2:ns,1)); 
end 
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ENVELOPE.M 

% ENVELOPE.M 

function [y,m] = envelope(x) 
% computes the envelope by taking the absolute value of 
% the Hilbert transform 

y = [] ; 
if nargin ~= 1, 

error('envelope: only one argument allowed'); 
end 
if min(size(x)) ~= 1, 
error('envelope: input argument must be a lxN orNxl vector'); 
end 
X=X(:); 

y=abs(hilbert(x) ) ; 
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MAP.M 

% MAP.M 

function A = map(f,N) 
% modified version of mapdn.m. It computes the amplitudes at the 
% scale outputs. 
M = length(f); 
n = round(log(M)/log (2)); 
a = wavedn(f,N); 
b(l) = a(l) ;b(2) = a(2) ; 
for j = l:n-l 

for k = l:2Aj 
index = 2*j+k+N/2-l; 
while index > 2* (j+1) , index = index-2*j;end 
b (index) = a(2*j+k) ,- 

end 
end 
a = b; 
for j = 1:2*(n-l) 
A(l,j) =a(l); 
end 
for j = 2:n+l 

for k = l:2x(j-2) 
for m = l:2*(n-j+l) 

A(j, (k-l)*2*(n-j+l)+m) = a(2*(j-2)+k); 
end 

end 
end 
A=A; 
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WAVEDN.M 

% WAVEDN.M 

function a = wavedn(f,N) 
5, 

M = length(f) ; 
n = round(log(M)/log(2) ) ; 
c = dcoeffs(N); 
clr = fliplr(c); 
for j = 1:2:N-1 , clr(j) = -clr(j) ; end 
a = f; 
for k = n:-1:1 
m = 2^(k-l); 
X = [0] ; y = [0] ; 
for i = l:m 

for j = 1:N 
k(j) = 2*i-2 + j; 
while k(j) > 2*m , k(j) = k(j)-2*m ;end 

end 
z = a(k) ; 
[mr,nc] = size(z) ; 
if nc > 1 , z = z' ; end 
x(i) = C*Z; 
y(i) = clr*z; 

end 
X = x/2 ; y = y/2 ; 
a(l:m) = X; 
a(m+l:2*m) = y; 

end 
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DCOEFFS.M 

% DCOEFFS.M 

function c = dcoeffs(N) 
o, 
"o 

nm = sqrt(2); 
c = zeros(1,N); 
if N == 2 
C = [1 1] ; 
end 
if N == 4 
c= [(1+sqrt(3))/4 (3+sgrt(3))/4 (3-sqrt(3))/4 (1-sqrt(3))/4]; 
end 
if N == 6 
q = sqrt(10),-s = sqrt(5+2*q); 
c = [(l+q+s)/l6 (5+q+3*s)/l6 (5-q+s)/8 (5-q-s)/8  (5+q-3*s)/l6  (1 
+q-s)/l6] ; 
end 
if N == 8 
c = [.3258030428051 ,1.010945715092 .892200138246,-.039575026236, 
-.264507167369,.043616300475,.046503601071,-0.14986989330]; 
end 
if N == 10 
c = [.226418982583,.853943542705,1.024326944260,.195766961347,-.34 
2656715382,- .045601131884, .109702 658642,-.008826800109,-.017791870 
102,.004717427938]; 
end 
if N == 12 
c = [.157742432003,.699503814075,1.062263759882,.445831322930,-.31 
9986598891,-.183518064060, .137888092974, .038923209708,-.0446637483 
31, .000783251152, .006756062363,-.001523533805] ; 
end 
if N == 14 
c = [.110099430746,.560791283 626,1.031148491636,.664372482211,-.20 
3513822463,-.316835011281,.100846465010,.114003445160,-.0537824525 
90,-.023439941565,.017749792379,.000607514996,-.002547904718,.0005 
00226853]; 
end 
if N == 16 
c = [.076955622108,.442467247152,.955486150427,.827816532422,-.022 
385735333,-.401658632 782,.000668194093,.182076356847,-.02456390104 
6,-.062350206651,.019772159296,.0123 68844819,-.006887719256,-.0005 
54004548,.000955229711,-.000166137261]; 
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DCOEFFS.M 

end 
if N == 18 

C = [.053850349589, .344834303815, .855349064359, .929545714366, .1883 
69549506,-.414751761802,-.136953549025,.210068342279,.043452675461 
,-.095647264120, .000354892813, .031624165853,-.006679620227,-.00605 
4960574,.002612967280,.000325814672,-.000356329759,.000055645514]; 
end 
if N == 20 

C = [.037717157593,.266122182794,.745575071487,.973628110734,.3976 
37741770,-.353336201794,-.277109878720,.180127448534,.131602987102 
,-.100966571196,-.041659248088,.046969814097,.005100436968,-.01517 
9002335,.001973325365,.002817686590,-.000969947840,-.000164709006, 
.000132354366,-.000018758416]; 
end 
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DISTANCE.M 

DISTANCE.M 

% set up to work with 4 templates (i.e. 4 transmitters) 
sl=input('enter the signal name');% wavelet transform output 
kkl=input('enter WT matrix of template 1     :'); 
%mml=input('enter WT matrix of template 2     :') 
%ttl=input('enter WT matrix of template 3 
%wl=input (' enter WT matrix of template 4 

') 

') 

% assumes scales 6,7,8,9,10,11 are of interest 
%(i.e. data length =4096 = 2A12 therefore 11 scales 
%with only the last 6 of interest to this study 
% scales 6 to 11 ; n=scale #; highest scale = highest freq band 
for n=6:ll 
t=length(kkl(l,:))/(2An); 
col=n+2; % corresponding row for the scale 
a=kkl(col,l:t:length(kkl(l,:) )) ; 
%b=mml(col,1:t:length(mml(1, :))) ; 
%c=ttl(col,l:t:length(ttl(1, : ) ) ) ; 
%f=wl(col,l:t:length(wl(l, :) ) ) ; 
s=sl(col,l:t:length(sl(l, :)));% signal to be tested 

% find local extrema 
a=localext (a) ,- 
%b=localext(b); 
%c=localext(c); 
%f=localext(f); 
d=localext(s) ; 
%sort extrema in ascending order 
[tempi,i]=sort(a);% template 1 
% [temp2, j] =sort (b) ,-% template 2 
%[temp3,k]=sort(c);% template 3 
%[temp4,g]=sort(f);% template 4 
[x,m]=sort(d); 

% Difference measures 
shiftl=m(length(x))-i(length(a));%shift for line up of max peaks 
%shift2=m(length(x))-j(length(b));%shift for line up of max peaks 
%shift3=m(length(x))-k(length(c));%shift for line up of max peaks 
%shift4=m(length(x))-q(length(f));%shift for line up of max peaks 
wl=[abs(m-i-shiftl)];   %penalty weights 
%w2=[abs(m-j-shift2)];   %penalty weights 
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DISTANCE.M 

%w3 =[abs(m-k-shift3)];   %penalty weights 
%w4=[abs(m-q-shift4)];   %penalty weights 
wl(find(wl==0))=ones(l,length(find(wl==0)));%modific. for no 0 
%w2(find(w2==0))=ones(l,length(find(w2==0)));%modific. for no 0 
%w3(find(w3==0))=ones(l,length(find(w3==0)));%modific. for no 0 
%w4(find(w4==0))=ones(l,length(find(w4==0)));%modific. for no 0 
% the smaller the distance dl, d2, etc. the more likely the test 
%signal belongs to the transmiter 1,2 , etc. 
dl(n)=sum(sqrt(wl.*(tempi-x).A2)); 
%d2(n)=sum(sqrt(w2.*(temp2-x).^2)) 
%d3(n)=sum(sgrt(w3.*(temp3-x) .^2) ) 
%d4(n)=sum(sqrt(w4.*(temp4-x).A2)) 
end 
end 
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LOCALEXT.M 

% LOCALEXT.M 

function [ou,k]=localext(sg) 
% LOCALEXT extracts the local extrema of a vector 
% nonextrema are set to zero 
% [Y,K] =localext(x) will return the number of deleted samples 
0 — — — — — — — — — — — _ — — — — _. _ — — — — — — — — — — — — — —  

%   copyright 1994 by Universidad de Vigo 
%   under GNU conditions 
% Author: Sergio J. Garcia Galan 
%   e-mail: Uvi_Wave@sc.uvigo.es 
O  

l=length(sg); 
sg=sg(:)'; 
ou=zeros (1,1) ,- 
ax=abs(sg); 
MX=max(ax); 
MX=MX+1; 
ou(l)=sg(l) ; 
ou(l)=sg(l) ; 
k=0; 
for i=2:l-l 
if(sg(i)>sg(i-l))&(sg(i)>sg(i+i)) 

ou(i) =sg(i) ; 
k=k+l; 
end 

if(sg(i)<sg(i-l))&(sg(i)<sg(i+l)) 
ou(i) =sg(i) ; 
k=k+l; 
end 

end 
k=l-k; 
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